Federated Learning: Privacy-Preserving Collaborative Machine Learning

Authors

  • Shashi Thota Senior Data Engineer, Naten LLC, San Franciso, USA Author
  • Vinay Kumar Reddy Vangoor System Administrator, Techno Bytes Inc, Arizona, USA Author
  • Amit Kumar Reddy Programmer Analyst, EZ2 Technologies Inc, Alabama, USA Author
  • Chetan Sasidhar Ravi SOA Developer, Fusion Plus Solutions LLC, New Jersey, USA Author

Keywords:

federated learning, privacy-preserving, fraud detection

Abstract

Private model training across decentralized data sources using federated learning (FL) transforms collaborative machine learning. Federation-based learning trains models on data from many nodes without raw data interchange. The abstract covers federated learning's basics, architecture, applications, problems, and future research. 

Federated learning allows several users to train a global model without sharing data. Initialize and distribute global models to nodes. Nodes only submit gradients and parameters to a central server after learning their dataset. The server sends the nodes the global model for training from these adjustments. Loop continues until model works. 

References

J. Konecny, H. B. McMahan, F. Y. M. Yu, and J. A. Smith, “Federated Learning: Strategies for Improving Communication Efficiency,” Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 54, pp. 330-339, 2017.

R. J. Shokri and V. Shmatikov, “Privacy-Preserving Deep Learning,” Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 1310-1321, 2015.

A. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Zhang, “Communication-Efficient Learning of Deep Networks from Decentralized Data,” Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 54, pp. 1273-1282, 2017.

M. Chen, Y. Zhou, M. Yang, and J. Xu, “Federated Learning for Privacy-Preserving Machine Learning: A Review,” IEEE Access, vol. 8, pp. 109830-109844, 2020.

J. Li, J. Liu, and Y. Zhang, “Federated Learning: A Privacy-Preserving Machine Learning Framework,” IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 1267-1280, 2020.

L. Zhang, M. Chen, and X. Wang, “Advances and Applications of Federated Learning in Healthcare,” IEEE Transactions on Biomedical Engineering, vol. 67, no. 11, pp. 3125-3137, 2020.

A. Ammar, B. Sharma, and A. Y. A. Zhang, “Federated Learning for IoT: A Comprehensive Survey,” IEEE Internet of Things Journal, vol. 8, no. 2, pp. 930-945, 2021.

J. Huang, X. Xu, and W. Zhang, “A Survey on Federated Learning: Techniques, Applications, and Challenges,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 9, pp. 3742-3756, 2021.

L. K. Saul, “Modeling and Learning in Federated Systems,” Proceedings of the 2020 IEEE International Conference on Computer Vision (ICCV), pp. 1026-1034, 2020.

S. Zhao, R. Zhang, and L. Lin, “Secure Federated Learning with Blockchain for IoT,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 150-160, 2021.

A. Pandey, N. K. Gupta, and R. Singh, “Federated Learning in Finance: Opportunities and Challenges,” Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), pp. 1284-1293, 2019.

H. Yang, X. Liu, and L. Li, “Adaptive Federated Learning for Resource-Constrained IoT Devices,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 1, pp. 64-74, 2021.

Y. Wang, D. Xu, and Z. Xu, “Privacy-Preserving Federated Learning with Differential Privacy,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3372-3385, 2020.

B. Yang, M. Liu, and R. Liu, “Scalable Federated Learning: A Survey of Techniques and Applications,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 11, pp. 4821-4834, 2021.

A. M. H. Khan and S. M. A. Raza, “Efficient Federated Learning for Edge Computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1887-1897, 2021.

G. M. Fiumara and A. E. Anderson, “Federated Learning in Smart Cities: Challenges and Solutions,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 5422-5432, 2021.

C. Zhang, W. Shen, and J. Liu, “Robust Federated Learning: Methods and Applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 32, no. 5, pp. 952-965, 2020.

D. Chen, Y. Li, and L. Xu, “Blockchain-Based Federated Learning: Security and Privacy Perspectives,” IEEE Transactions on Network and Service Management, vol. 18, no. 3, pp. 1420-1432, 2021.

Z. Zhang, H. Wu, and C. Xu, “Exploring Federated Learning for Cybersecurity: A Survey,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 4553-4564, 2020.

M. H. Chen, Z. Hu, and Y. Zhang, “Federated Learning with Communication-Efficient Strategies,” Proceedings of the 2020 IEEE International Conference on Big Data (BigData), pp. 3142-3151, 2020.

Published

15-05-2019

How to Cite

[1]
Shashi Thota, Vinay Kumar Reddy Vangoor, Amit Kumar Reddy, and Chetan Sasidhar Ravi, “Federated Learning: Privacy-Preserving Collaborative Machine Learning”, Distrib. Learn. Broad Appl. Sci. Res., vol. 5, pp. 168–190, May 2019, Accessed: Apr. 28, 2025. [Online]. Available: https://dlbasr.org/index.php/publication/article/view/14