Kubernetes Gains Traction: Managing Data Workloads

Authors

  • Naresh Dulam Vice President Sr Lead Software Engineer, JP Morgan Chase, USA Author
  • Venkataramana Gosukonda Senior Software Engineering Manager, Wells Fargo, USA Author
  • Karthik Allam Big Data Infrastructure Engineer, JP Morgan & Chase, USA Author

Keywords:

Kubernetes, container orchestration, data workloads, scalability

Abstract

Current distributed systems are efficient and adaptable. Data workload management changes with Kaubernetes. Open-source container orchestration manages resources, workload, and fault tolerance. It simplifies containerized app startup, scaling, and maintenance.
On-premises and cloud hybrid container administration is simplified via modules, services, and namespaces.

Kubernetes' dynamic resource allocation allows big data processing and real-time analytics. Self-healing and declarative data pipeline enhancements work. Big data and machine learning accelerate Kubernetes processing and insights. 

Learning Kubernetes for data workloads is tough, storage is hard, and security is weak. Monitoring technologies, cluster management, and community resources may overcome these difficulties. Kubernetes improves resource, scalability, and workload efficiency. Good workload manager Kubernetes simplifies application management, allowing market adaptability and innovation. 

References

1. Abdelbaky, M., Diaz-Montes, J., Parashar, M., Unuvar, M., & Steinder, M. (2015, December). Docker containers across multiple clouds and data centers. In 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC) (pp. 368-371). IEEE.

2. Murudi, V., & Kumar, K. M. (2016). Container ecosystem based PaaS solution for Telco Cloud Analysis and Proposal. GSTF Journal on Computing, 5(1).

3. Schulz, W. L., Durant, T. J., Siddon, A. J., & Torres, R. (2016). Use of application containers and workflows for genomic data analysis. Journal of pathology informatics, 7(1), 53.

4. Soppelsa, F., & Kaewkasi, C. (2016). Native docker clustering with swarm. Packt Publishing Ltd.

5. Balaganski, A. (2015). API Security Management. KuppingerCole Report, (70958), 20-27.

6. Chayapathi, R., Hassan, S. F., & Shah, P. (2016). Network functions virtualization (NFV) with a touch of SDN. Addison-Wesley Professional.

7. Tools, P. P., & Data, P. W. (2015). File Systems. JETS.

8. D’Hoinne, J., Hils, A., & Neiva, C. (2014). Magic quadrant for web application firewalls. Gartner, Stamford, CT, USA, Tech. Rep, 1.

9. Winn, D. C. (2016). Cloud Foundry: the cloud-native platform. " O'Reilly Media, Inc.".

10.Iordache, A. (2016). Performance-cost trade-offs in heterogeneous clouds (Doctoral dissertation, Université Rennes 1).

11. Dunie, R., Schulte, W. R., Cantara, M., & Kerremans, M. (2015). Magic Quadrant for intelligent business process management suites. Gartner Inc.

12. Evens, J. (2015). A comparison of containers and virtual machines for use with NFV.

13. Yaqub, E. (2015). Generic Methods for Adaptive Management of Service Level Agreements in Cloud Computing (Doctoral dissertation, Niedersächsische Staats-und Universitätsbibliothek Göttingen).

14. Suneja, S., & Seelam, S. (2016). ConfAdvisor: A Performance-centric Configuration Tuning Framework for Containers on Kubernetes Tatsuhiro Chiba, Rina Nakazawa, Hiroshi Horii.

15. Sanchez, C. (2015). Scaling docker with kubernetes. Website. Available online at http://www. infoq. com/articles/scaling-docker-with-kubernetes, 35.

Published

29-05-2017

How to Cite

[1]
Naresh Dulam, Venkataramana Gosukonda, and Karthik Allam, “Kubernetes Gains Traction: Managing Data Workloads”, Distrib. Learn. Broad Appl. Sci. Res., vol. 3, pp. 69–92, May 2017, Accessed: Mar. 14, 2025. [Online]. Available: https://dlbasr.org/index.php/publication/article/view/81